```
<!--All links of our model.-->
<!--The root frame in ROS is called the base_link and represents the root frame (B_0) in
our system. -->
<link name="base_link"/>
<!--The link 1 o\overline{f our model. -->}
<link name="link_1"/>
<!-- The working frame of our model is represented as a link.-->
<link name="work_frame"/>
```

<!--All joints of our model.-->

<!--The revolute joint 1, which couples the base link (parent link) with the link 1
(child link) is modeled here.
The joint is located at the origin of the child link.-->
<joint name="joint_1" type="revolute">
 <parent link="base_link"/>
 <child link="link_1"/>
 <!-- Selection of rotation axis, in our case around the joint is around the z-axis in
 positive direction.-->
 <axis xyz="0 0 1"/>
 <!-- The transformation between the parent and child link is given here.-->
 <!-- The translational components (xyz) are given in meters. -->
 <!-- The rotation is expressed by the Euler angles (rpy) in radians according to the
 following
 notation (r)oll (rot. x-axis), (p)itch (rot. y-axis), and (y) aw (rot. z-axis). -->
 <origin xyz="0 0 0.4" rpy="1.57079632679 0.0 0.0"/>
 <!-- The model of a movable joint must include further physical properties. -->
 <limit effort="100" lower="-0.175" upper="3.1416" velocity="0.5"/>
 </joint>
 <!-- The work frame lies at the end of link 1, hence in ROS this connection is modelled
 as a fixed joint. -->
 <joint name="joint_work_frame" type="fixed">
 <parent link="Iink \(\overline{1} " />\)
 <child link="work frame"/>
 <origin rpy="-1.57079632679 0.0 -1.57079632679" xyz="0.8 0 0.0"/>
 </joint>
 </robot>

